BUSINESS RESEARCH MODULE 3 - MEASUREMENT AND SCALING TECHNIQUES

MEASUREMENT IN RESEARCH

In our daily life we are said to measure when we use some yardstick to determine weight, height, or some other feature of a physical object. We also measure when we judge how well we like a song, a painting or the personalities of our friends. We, thus, measure physical objects as well as abstract concepts. Measurement is a relatively complex and demanding task, especially so when it concerns qualitative or abstract phenomena. By measurement we mean the process of assigning numbers to objects or observations, the level of measurement being a function of the rules under which the numbers are assigned.

It is easy to assign numbers in respect of properties of some objects, but it is relatively difficult in respect of others. For instance, measuring such things as social conformity, intelligence, or marital adjustment is much less obvious and requires much closer attention than measuring physical weight, biological age or a person's financial assets. In other words, properties like weight, height, etc., can be measured directly with some standard unit of measurement, but it is not that easy to measure properties like motivation to succeed, ability to stand stress and the like. We can expect high accuracy in measuring the length of pipe with a yard stick, but if the concept is abstract and the measurement tools are not standardized, we are less confident about the accuracy of the results of measurement.

Technically speaking, measurement is a process of mapping aspects of a domain onto other aspects of a range according to some rule of correspondence. In measuring, we devise some form of scale in the range (in terms of set theory, range may refer to some set) and then transform or map the properties of objects from the domain (in terms of set theory, domain may refer to some other set) onto this scale. For example, in case we are to find the male to female attendance ratio while conducting a study of persons who attend some show, then we may tabulate those who come to the show according to sex. In terms of set theory, this process is one of mapping the observed physical properties of those coming to the show (the domain) on to a sex classification (the range).

VISHAKHA MANKAR

The rule of correspondence is: If the object in the domain appears to be male, assign to "0" and if female assign to "1". Similarly, we can record a person's marital status as 1, 2, 3 or 4, depending on whether the person is single, married, widowed or divorced. We can as well record "Yes or No" answers to a question as "0" and "1" (or as 1 and 2 or perhaps as 59 and 60). In this artificial or nominal way, categorical data (qualitative or descriptive) can be made into numerical data and if we thus code the various categories, we refer to the numbers we record as nominal data. *Nominal data* are numerical in name only, because they do not share any of the properties of the numbers we deal in ordinary arithmetic. For instance if we record marital status as 1, 2, 3, or 4 as stated above, we cannot write

4 > 2 or 3 < 4 and we cannot write 3 - 1 = 4 - 2, 1 + 3 = 4 or $4 \downarrow 2 = 2$.

In those situations when we cannot do anything except set up inequalities, we refer to the data as *ordinal data*. When in addition to setting up inequalities we can also form differences, we refer to the data as *interval data*. When in addition to setting up inequalities and forming differences we can also form quotients

(i.e., when we can perform all the customary operations of mathematics), we refer to such data as *ratio data*.

MEASUREMENT SCALES

From what has been stated above, we can write that scales of measurement can be considered in terms of their mathematical properties. The most widely used classification of measurement scales are: (a) nominal scale; (b) ordinal scale; (c) interval scale; and (d) ratio scale.

(a) Nominal scale: Nominal scale is simply a system of assigning number symbols to events in order to label them. The usual example of this is the assignment of numbers of basketball players in order to identify them. Such numbers cannot be considered to be associated with an ordered scale for their order is of no consequence; the numbers are just convenient labels for the particular class of events and as such have no quantitative value. Nominal scales provide convenient ways of keeping track of people, objects and events. One cannot do much with the numbers involved. For example, one cannot usefully average the numbers on the back of a group of football players and come up with a meaningful value. Neither can one usefully compare the numbers assigned to one group with the numbers assigned to another. The counting of members in each group is the only possible arithmetic operation when a nominal scale is employed. Accordingly, we are restricted to use mode as the measure of central tendency. There is no generally used measure of dispersion for nominal scales.

Chi-square test is the most common test of statistical significance that can be utilized, and for the measures of correlation, the contingency coefficient can be worked out.

Nominal scale is the least powerful level of measurement. It indicates no order or distance relationship and has no arithmetic origin. A nominal scale simply describes differences between things by assigning them to categories. Nominal data are, thus, counted data. The scale wastes any information that we may have about varying degrees of attitude, skills, understandings, etc. In spite of all this, nominal scales are still very useful and are widely used in surveys and other *expost-facto* research when data are being classified by major sub-groups of the population.

(b) Ordinal scale: The lowest level of the ordered scale that is commonly used is the ordinal scale.

The ordinal scale places events in order, but there is no attempt to make the intervals of the scale equal in terms of some rule. Rank orders represent ordinal scales and are frequently used in research relating to qualitative phenomena. A student's rank in his graduation class involves the use of an ordinal scale. One has to be very careful in making statement about scores based on ordinal scales.

For instance, if Ram's position in his class is 10 and Mohan's position is 40, it cannot be said that

Ram's position is four times as good as that of Mohan. The statement would make no sense at all.

Ordinal scales only permit the ranking of items from highest to lowest. Ordinal measures have no absolute values, and the real differences between adjacent ranks may not be equal. All that can be said is that one person is higher or lower on the scale than another, but more precise comparisons cannot be made.

Thus, the use of an ordinal scale implies a statement of 'greater than' or 'less than' (an equality statement is also acceptable) without our being able to state how much greater or less. The real difference between ranks 1 and 2 may be more or less than the difference between ranks 5 and 6.

Since the numbers of this scale have only a rank meaning, the appropriate measure of central tendency is the median. A percentile or quartile measure is used for measuring dispersion. Correlations are restricted to various rank order methods. Measures of statistical significance are restricted to the non-parametric methods.

(c) Interval scale: In the case of interval scale, the intervals are adjusted in terms of some rule that has been established as a basis for making the units equal. The

units are equal only in so far as one accepts the assumptions on which the rule is based. Interval scales can have an arbitrary zero, but it is not possible to determine for them what may be called an absolute zero or the unique origin. The primary limitation of the interval scale is the lack of a true zero; it does not have the capacity to measure the complete absence of a trait or characteristic. The Fahrenheit scale is an example of an interval scale and shows similarities in what one can and cannot do with it. One can say that an increase in temperature from 30° to 40° involves the same increase in temperature as an increase from 60° to 70° , but one cannot say that the temperature of 60° is twice as warm as the temperature of 30° because both numbers are dependent on the fact that the zero on the scale is set arbitrarily at the temperature of the freezing point of water. The ratio of the two temperatures, 30° and 60° , means nothing because zero is an arbitrary point.

Interval scales provide more powerful measurement than ordinal scales for interval scale also incorporates the concept of equality of interval. As such more powerful statistical measures can be used with interval scales. Mean is the appropriate measure of central tendency, while standard deviation is the most widely used measure of dispersion. Product moment correlation techniques are appropriate and the generally used tests for statistical significance are the treat of F' test.

(d) **Ratio scale:** Ratio scales have an absolute or true zero of measurement. The term 'absolute zero' is not as precise as it was once believed to be. We can conceive of an absolute zero of length and similarly we can conceive of an absolute zero of time. For example, the zero point on a centimeter scale indicates the complete absence of length or height. But an absolute zero of temperature is theoretically unobtainable and it remains a concept existing only in the scientist's mind. The number of minor traffic-rule violations and the number of incorrect letters in a page of type script represent scores on ratio scales. Both these scales have absolute zeros and as such all minor traffic violations and all typing errors can be assumed to be equal in significance. With ratio scales involved one can make statements like "Jyoti's" typing performance was twice as good as that of "Reetu." The ratio involved does have significance and facilitates a kind of comparison which is not possible in case of an interval scale.

Ratio scale represents the actual amounts of variables. Measures of physical dimensions such as weight, height, distance, etc. are examples. Generally, all statistical techniques are usable with ratio scales and all manipulations that one can carry out with real numbers can also be carried out with ratio scale values. Multiplication and division can be used with this scale but not with other scales

mentioned above. Geometric and harmonic means can be used as measures of central tendency and coefficients of variation may also be calculated.

SOURCES OF ERROR IN MEASUREMENT

Measurement should be precise and unambiguous in an ideal research study. This objective, however, is often not met with in entirety. As such the researcher must be aware about the sources of error in measurement. The following are the possible sources of error in measurement.

(a) **Respondent:** At times the respondent may be reluctant to express strong negative feelings or it is just possible that he may have very little knowledge but may not admit his ignorance. All this reluctance is likely to result in an interview of 'guesses.' Transient factors like fatigue, boredom, anxiety, etc. may limit the ability of the respondent to respond accurately and fully.

(b) Situation: Situational factors may also come in the way of correct measurement. Any condition which places a strain on interview can have serious effects on the interviewer-respondent rapport.

For instance, if someone else is present, he can distort responses by joining in or merely by being present. If the respondent feels that anonymity is not assured, he may be reluctant to express certain feelings.

(c) Measurer: The interviewer can distort responses by rewording or reordering questions. His behavior, style and looks may encourage or discourage certain replies from respondents. Careless mechanical processing may distort the findings. Errors may also creep in because of incorrect coding, faulty tabulation and/or statistical calculations, particularly in the data-analysis stage.

(d) Instrument: Error may arise because of the defective measuring instrument. The use of complex words, beyond the comprehension of the respondent, ambiguous meanings, poor printing, inadequate space for replies, response choice omissions, etc. are a few things that make the measuring instrument defective and may result in measurement errors. Another type of instrument deficiency is the poor sampling of the universe of items of concern.

Researcher must know that correct measurement depends on successfully meeting all of the problems listed above. He must, to the extent possible, try to eliminate, neutralize or otherwise deal with all the possible sources of error so that the final results may not be contaminated.

TESTS OF SOUND MEASUREMENT

Sound measurement must meet the tests of validity, reliability and practicality. In fact, these are the three major considerations one should use in evaluating a measurement tool

1. Test of Validity

Validity is the most critical criterion and indicates the degree to which an instrument measures what it is supposed to measure. Validity can also be thought of as utility. In other words, validity is the extent to which differences found with a measuring instrument reflect true differences among those being tested. But the question arises: how can one determine validity without direct confirming knowledge? The answer may be that we seek other relevant evidence that confirms the answers we have found with our measuring tool. What is relevant, evidence often depends upon the nature of the research problem and the judgment of the researcher. But one can certainly consider three types of validity in this connection: (i) Content validity; (ii) Criterion-related validity and (iii) Construct validity.

(i) *Content validity* is the extent to which a measuring instrument provides adequate coverage of the topic under study. If the instrument contains a representative sample of the universe, the content validity is good. Its determination is primarily judgmental and intuitive. It can also be determined by using a panel of persons who shall judge how well the measuring instrument meets the standards, but there is no numerical way to express it.

(ii) *Criterion-related validity* relates to our ability to predict some outcome or estimate the existence of some current condition. This form of validity reflects the success of measures used for some empirical estimating purpose. The concerned criterion must possess the following qualities:

Relevance: (A criterion is relevant if it is defined in terms we judge to be the proper measure.)

Freedom from bias: (Freedom from bias is attained when the criterion gives each subject an equal opportunity to score well.)

Reliability: (A reliable criterion is stable or reproducible.)

Availability: (The information specified by the criterion must be available.)

In fact, a Criterion-related validity is a broad term that actually refers to (i) *Predictive validity* and (*ii*) *Concurrent validity*. The former refers to the usefulness of a test in predicting some future performance whereas the latter refers to the

usefulness of a test in closely relating to other measures of known validity. Criterion-related validity is expressed as the coefficient of correlation between test scores and some measure of future performance or between test scores and scores on another measure of known validity.

(iii) *Construct validity* is the most complex and abstract. A measure is said to possess construct validity to the degree that it confirms to predicted correlations with other theoretical propositions.

Construct validity is the degree to which scores on a test can be accounted for by the explanatory constructs of a sound theory. For determining construct validity, we associate a set of other propositions with the results received from using our measurement instrument. If measurements on our devised scale correlate in a predicted way with these other propositions, we can conclude that there is some construct validity.

If the above stated criteria and tests are met with, we may state that our measuring instrument is valid and will result in correct measurement; otherwise we shall have to look for more information and/or resort to exercise of judgment.

2. Test of Reliability

The test of reliability is another important test of sound measurement. A measuring instrument is reliable if it provides consistent results. Reliable measuring instrument does contribute to validity, but a reliable instrument need not be a valid instrument. For instance, a scale that consistently overweighs objects by five kg. It is a reliable scale, but it does not give a valid measure of weight. But the other way is not true i.e., a valid instrument is always reliable. Accordingly reliability is not as valuable as validity, but it is easier to assess reliability in comparison to validity. If the quality of reliability is satisfied by an instrument, then while using it we can be confident that the transient and situational factors are not interfering. Two aspects of reliability viz., stability and equivalence deserve special mention. The stability aspect is concerned with securing consistent results with repeated measurements of the same person and with the same instrument. We usually determine the degree of stability by comparing the results of repeated measurements. The equivalence aspect considers how much error may get introduced by different investigators or different samples of the items being studied. A good way to test for the equivalence of measurements by two investigators is to compare their observations of the same events. Reliability can be improved in the following two ways:

(i) By standardizing the conditions under which the measurement takes place i.e., we must ensure that external sources of variation such as boredom, fatigue, etc., are minimized to the extent possible. That will improve stability aspect.

(ii) By carefully designed directions for measurement with no variation from group to group, by using trained and motivated persons to conduct the research and also by broadening the sample of items used. This will improve equivalence aspect.

3. Test of Practicality

The practicality characteristic of a measuring instrument can be judged in terms of economy, convenience and interpretability. From the operational point of view, the measuring instrument ought to be practical i.e., it should be economical, convenient and interpretable. Economy consideration suggests that some trade-off is needed between the ideal research project and that which the budget can afford. The length of measuring instrument is an important area where economic pressures are quickly felt. Although more items give greater reliability as stated earlier, but in the interest of limiting the interview or observation time, we have to take only few items for our study purpose. Similarly, data-collection methods to be used are also dependent at times upon economic factors. Convenience test suggests that the measuring instrument should be easy to administer. For this purpose one should give due attention to the proper layout of the measuring instrument. For instance, a questionnaire, with clear instructions (illustrated by examples), is certainly more effective and easier to complete than one which lacks these features. Interpretability consideration is especially important when persons other than the designers of the test are to interpret the results. The measuring instrument, in order to be interpretable, must be supplemented by (a) detailed instructions for administering the test;

(b) Scoring keys; (c) evidence about the reliability and (d) guides for using the test and for interpreting results.

TECHNIQUE OF DEVELOPING MEASUREMENT TOOLS

The technique of developing measurement tools involves a four-stage process, consisting of the following:

- (a) Concept development;
- (b) Specification of concept dimensions;
- (c) Selection of indicators; and
- (d) Formation of index.

The first and foremost step is that of *concept development* which means that the researcher should arrive at an understanding of the major concepts pertaining to his

study. This step of concept development is more apparent in theoretical studies than in the more pragmatic research, where the fundamental concepts are often already established.

The second step requires the researcher to specify the *dimensions of the concepts* that he developed in the first stage. This task may either be accomplished by deduction i.e., by adopting a more or less intuitive approach or by empirical correlation of the individual dimensions with the total concept and/or the other concepts. For instance, one may think of several dimensions such as product reputation, customer treatment, corporate leadership, concern for individuals, and sense of social responsibility and so forth when one is thinking about the image of a certain company.

Once the dimensions of a concept have been specified, the researcher must *develop indicators* for measuring each concept element. Indicators are specific questions, scales, or other devices by which respondent's knowledge, opinion, expectation, etc., are measured. As there is seldom a perfect measure of a concept, the researcher should consider several alternatives for the purpose. The use of more than one indicator gives stability to the scores and it also improves their validity.

The last step is that of combining the various indicators into an index, i.e., *formation of an index*. When we have several dimensions of a concept or different measurements of a dimension, we may need to combine them into a single index. One simple way for getting an overall index is to provide scale values to the responses and then sum up the corresponding scores. Such an overall index would provide a better measurement tool than a single indicator because of the fact that an "individual indicator has only a probability relation to what we really want to know."This way we must obtain an overall index for the various concepts concerning the research study.

SCALING

Scaling describes the procedures of assigning numbers to various degrees of opinion, attitude and other concepts. This can be done in two ways viz., (i) making a judgment about some characteristic of an individual and then placing him directly on a scale that has been defined in terms of that characteristic and (ii) constructing questionnaires in such a way that the score of individual's responses assigns him a place on a scale. It may be stated here that a scale is a continuum, consisting of the highest point and the lowest point along with several intermediate points between these two extreme points.

Scale Classification Bases

The number assigning procedures or the scaling procedures may be broadly classified on one or more of the following bases: (a) subject orientation; (b) response form; (c) degree of subjectivity; (d) Scale properties; (e) number of dimensions and (f) scale construction techniques. We take up each of these separately.

(a) Subject orientation: Under it a scale may be designed to measure characteristics of the respondent who completes it or to judge the stimulus object which is presented to the respondent. In respect of the former, we presume that the stimuli presented are sufficiently homogeneous so that the between stimuli variation is small as compared to the variation among respondents. In the latter approach, we ask the respondent to judge some specific object in terms of one or more dimensions and we presume that the between-respondent variation will be small as compared to the variation among the different stimuli presented to respondents for judging.

(b) **Response form:** Under this we may classify the scales as categorical and comparative.

Categorical scales are also known as rating scales. These scales are used when a respondent scores some object without direct reference to other objects. Under comparative scales, which are also known as ranking scales, the respondent is asked to compare two or more objects. In this sense the respondent may state that one object is superior to the other or those three models of pen rank in order 1, 2 and 3. The essence of ranking is, in fact, a relative comparison of a certain property of two or more objects.

(c) **Degree of subjectivity:** With this basis the scale data may be based on whether we measure subjective personal preferences or simply make non-preference judgments. In the former case, the respondent is asked to choose which person he favors or which solution he would like to see employed, whereas in the latter case he is simply asked to judge which person is more effective in some aspect or which solution will take fewer resources without reflecting any personal preference.

(d) Scale properties: Considering scale properties, one may classify the scales as nominal, ordinal, interval and ratio scales. Nominal scales merely classify without indicating order, distance or unique origin. Ordinal scales indicate magnitude

relationships of 'more than' or 'less than', but indicate no distance or unique origin. Interval scales have both order and distance values, but no unique origin. Ratio scales possess all these features.

(e) Number of dimensions: In respect of this basis, scales can be classified as 'one-dimensional' and 'multidimensional' scales. Under the former we measure only one attribute of the respondent or object, whereas multidimensional scaling recognizes that an object might be described better by using the concept of an attribute space of 'n' dimensions, rather than a single-dimension continuum.

IMPORTANT SCALING TECHNIQUES

I. Rating scales:

The rating scale involves qualitative description of a limited number of aspects of a thing or of traits of a person. When we use rating scales (or categorical scales), we judge an object in absolute terms against some specified criteria i.e., we judge properties of objects without reference to other similar objects. These ratings may be in such forms as "like-dislike", "above average, average, below average", or other classifications with more categories such as "like very much—like somewhat—neutral—dislike somewhat—dislike very much"; "excellent—good—average—below average—poor", "always—often—occasionally—rarely—never", and so on. There is no specific rule whether to use a two-points scale, three-points scale or scale with still more points.

Rating scale may be either a graphic rating scale or an itemized rating scale.

(i) *The graphic rating scale* is quite simple and is commonly used in practice. Under it the various points are usually put along the line to form a continuum and the rater indicates his rating by simply making a mark (such as ü) at the appropriate point on a line that runs from one extreme to the other. Scale-points with brief descriptions may be indicated along the line, their function being to assist the rater in performing his job. The following is an example of five-point graphic rating scale when we wish to ascertain people's liking or disliking any product:

This type of scale has several limitations. The respondents may check at almost any position along the line which fact may increase the difficulty of analysis. The meanings of the terms like "very much" and "some what" may depend upon respondent's frame of reference so much so that the statement might be challenged in terms of its equivalency. Several other rating scale variants (e.g., boxes replacing line) may also be used.

(ii) The *itemized rating scale* (also known as numerical scale) presents a series of statements from which a respondent selects one as best reflecting his evaluation. These statements are ordered progressively in terms of more or less of some property.

II. Ranking scales:

Under ranking scales (or comparative scales) we make relative judgments against other similar objects. The respondents under this method directly compare two or more objects and make choices among them. There are two generally used approaches of ranking scales viz

(a) Method of paired comparisons

Under it the respondent can express his attitude by making a choice between two objects, say between a new flavor of soft drink and an established brand of drink. But when there are more than two stimuli to judge, the number of judgments required in a paired comparison is given by the formula:

$$N = \frac{n (n-1)}{2}$$

Where N = number of judgments

n = number of stimuli or objects to be judged.

(b) Method of rank order: Under this method of comparative scaling, the respondents are asked to rank their choices. This method is easier and faster than the method of paired comparisons stated above. For example, with 10 items it takes 45 pair comparisons to complete the task, whereas the method of rank order simply requires ranking of 10 items only. The problem of transitivity (such as A prefers to B, B to C, but C prefers to A) is also not there in case we adopt method of rank order.

Moreover, a complete ranking at times is not needed in which case the respondents may be asked to rank only their first, say, four choices while the number of overall items involved may be more than four, say, it may be 15 or 20 or more. To secure a simple ranking of all items involved we simply total rank values received by each item. There are methods through which we can as well develop an interval scale of these data. But then there are limitations of this method. The first one is that data obtained through this method are ordinal data and hence rank ordering is an ordinal scale with all its limitations. Then there may be the problem of respondents becoming careless in assigning ranks particularly when there are many (usually more than 10) items.

SCALE CONSTRUCTION TECHNIQUES

In social science studies, while measuring attitudes of the people we generally follow the technique of preparing the opinionative* (or attitude scale) in such a way that the score of the individual responses assigns him a place on a scale. Under this approach, the respondent expresses his agreement or disagreement with a number of statements relevant to the issue. While developing such statements, the researcher must note the following two points:

(i) That the statements must elicit responses which are psychologically related to the attitude being measured;

(ii) That the statements need be such that they discriminate not merely between extremes of attitude but also among individuals who differ slightly.

Researchers must as well be aware that inferring attitude from what has been recorded in opinionnaires has several limitations. People may conceal their attitudes and express socially acceptable opinions. They may not really know how they feel about a social issue. People may be unaware of their attitude about an abstract situation; until confronted with a real situation, they may be unable to predict their reaction. Even behavior itself is at times not a true indication of

attitude. For instance, when politicians kiss babies, their behavior may not be a true expression of affection toward infants.

Thus, there is no sure method of measuring attitude; we only try to measure the expressed opinion and then draw inferences from it about people's real feelings or attitudes.

With all these limitations in mind, psychologists and sociologists have developed several scale construction techniques for the purpose. The researcher should know these techniques so as to develop an appropriate scale for his own study.

Following are the five main techniques by which scales can be developed.

(i) *Arbitrary approach:* It is an approach where scale is developed on *ad hoc* basis. This is the most widely used approach. It is presumed that such scales measure the concepts for which they have been designed, although there is little evidence to support such an assumption.

(ii) *Consensus approach:* Here a panel of judges evaluates the items chosen for inclusion in the instrument in terms of whether they are relevant to the topic area and unambiguous in implication.

(iii) *Item analysis approach:* Under it a number of individual items are developed into a test which is given to a group of respondents. After administering the test, the total scores are calculated for everyone. Individual items are then analyzed to determine which items discriminate between persons or objects with high total scores and those with low scores.

(iv) *Cumulative scales* are chosen on the basis of their conforming to some ranking of items with ascending and descending discriminating power. For instance, in such a scale the endorsement of an item representing an extreme position should also result in the endorsement of all items indicating a less extreme position.

(v) *Factor scales* may be constructed on the basis of intercorrelations of items which indicate that a common factor accounts for the relationship between items. This relationship is typically measured through factor analysis method.

Some of the important approaches, along with the corresponding scales developed under each approach to measure attitude are as follows:

Name of the	scale	construction	Name of the scale developed
approach			
1. Arbitrary approach			Arbitrary scales

VISHAKHA MANKAR

Shantiniketan Business School, Nagpur

2. Consensus scale approach	Differential scales (such as Thurstone
	Differential scale)
3. Item analysis approach	Summated scales (such as Likert Scale)
4. Cumulative scale approach	Cumulative scales (such as Guttman's Scalogram)
5. Factor analysis approach	Factor scales (such as Osgood's Semantic
	Differential, Multi-dimensional Scaling, etc.)

1. Arbitrary Scales

Arbitrary scales are developed on *ad hoc* basis and are designed largely through the researcher's own subjective selection of items. The researcher first collects few statements or items which he believes are unambiguous and appropriate to a given topic. Some of these are selected for inclusion in the measuring instrument and then people are asked to check in a list the statements with which they agree.

The chief merit of such scales is that they can be developed very easily, quickly and with relatively less expense. They can also be designed to be highly specific and adequate. Because of these benefits, such scales are widely used in practice.

At the same time there are some limitations of these scales. The most important one is that we do not have objective evidence that such scales measure the concepts for which they have been developed. We have simply to rely on researcher's insight and competence.

2. Differential Scales (or Thurstone-type Scales)

The name of L.L. Thurstone is associated with differential scales which have been developed using consensus scale approach. Under such an approach the selection of items is made by a panel of judges who evaluate the items in terms of whether they are relevant to the topic area and unambiguous in implication. The detailed procedure is as under:

(a) The researcher gathers a large number of statements, usually twenty or more, that express various points of view toward a group, institution, idea, or practice (i.e., statements belonging to the topic area).

(b) These statements are then submitted to a panel of judges, each of whom arranges them in eleven groups or piles ranging from one extreme to another in position. Each of the judges is requested to place generally in the first pile the statements which he thinks are most Unfavorable to the issue, in the second pile to place those statements which he thinks are next most unfavorable and he goes on doing so in this manner till in the eleventh pile he puts the statements which he considers to be the most favorable.

(c) This sorting by each judge yields a composite position for each of the items. In case of marked disagreement between the judges in assigning a position to an item, that item is discarded (d) For items that are retained, each is given its median scale value between one and eleven as established by the panel. In other words, the scale value of any one statement is computed as the 'median' position to which it is assigned by the group of judges.

(e) A final selection of statements is then made. For this purpose a sample of statements, whose median scores are spread evenly from one extreme to the other is taken. The statements so selected, constitute the final scale to be administered to respondents. The position of each statement on the scale is the same as determined by the judges.

After developing the scale as stated above, the respondents are asked during the administration of the scale to check the statements with which they agree. The median value of the statements that they check is worked out and this establishes their score or quantifies their opinion. It may be noted that in the actual instrument the statements are arranged in random order of scale value. If the values are valid and if the opinionnaire deals with only one attitude dimension, the typical respondent will choose one or several contiguous items (in terms of scale values) to reflect his views. However, at times divergence may occur when a statement appears to tap a different attitude dimension.

The Thurstone method has been widely used for developing differential scales which are utilized to measure attitudes towards varied issues like war, religion, etc. Such scales are considered most appropriate and reliable when used for measuring a single attitude. But an important deterrent to their use is the cost and effort required to develop them. Another weakness of such scales is that the values assigned to various statements by the judges may reflect their own attitudes. The method is not completely objective; it involves ultimately subjective decision process. Critics of this method also opine that some other scale designs give more information about the respondent's attitude in comparison to differential scales.

3. Summated Scales (or Likert-type Scales)

VISHAKHA MANKAR

Summated scales (or Likert-type scales) are developed by utilizing the item analysis approach wherein a particular item is evaluated on the basis of how well it discriminates between those persons whose total score is high and those whose score is low. Those items or statements that best meet this sort of discrimination test are included in the final instrument.

Thus, summated scales consist of a number of statements which express either a favorable or unfavorable attitude towards the given object to which the respondent is asked to react. The respondent indicates his agreement or disagreement with each statement in the instrument. Each response is given a numerical score, indicating its favorableness or unfavourableness, and the scores are totaled to measure the respondent's attitude. In other words, the overall score represents the respondent's position on the continuum of favourable-unfavourableness towards an issue.

Most frequently used summated scales in the study of social attitudes follow the pattern devised by Likert. For this reason they are often referred to as Likert-type scales. In a Likert scale, the respondent is asked to respond to each of the statements in terms of several degrees, usually five degrees (but at times 3 or 7 may also be used) of agreement or disagreement. For example, when asked to express opinion whether one considers his job quite pleasant, the respondent may respond in any one of the following ways: (i) strongly agree, (ii) agree, (iii) undecided, (iv) disagree, (v) strongly disagree

We find that these five points constitute the scale. At one extreme of the scale there is strong agreement with the given statement and at the other, strong disagreement, and between them lie intermediate points. We may illustrate this as under:

Each point on the scale carries a score. Response indicating the least favourable degree of job satisfaction is given the least score (say 1) and the most favourable is given the highest score (say 5).

VISHAKHA MANKAR

These score—values are normally not printed on the instrument but are shown here just to indicate the scoring pattern. The Likert scaling technique, thus, assigns a scale value to each of the five responses. The same thing is done in respect of each and every statement in the instrument. This way the instrument yields a total score for each respondent, which would then measure the respondent's favorableness toward the given point of view.

Advantages

The Likert-type scale has several advantages. Mention may be made of the important ones.

(a) It is relatively easy to construct the Likert-type scale in comparison to Thurstone-type scale because Likert-type scale can be performed without a panel of judges.

(b) Likert-type scale is considered more reliable because under it respondents answer each statement included in the instrument. As such it also provides more information and data than does the Thurstone-type scale.

(c) Each statement, included in the Likert-type scale, is given an empirical test for discriminating ability and as such, unlike Thurstone-type scale, the Likert-type scale permits the use of statements that are not manifestly related (to have a direct relationship) to the attitude being studied.

(d) Likert-type scale can easily be used in respondent-centred and stimulus-centred studies i.e., through it we can study how responses differ between people and how responses differ between stimuli.

(e) Likert-type scale takes much less time to construct; it is frequently used by the students of opinion research. Moreover, it has been reported in various research studies* that there is high degree of correlation between Likert-type scale and Thurstone-type scale.

Limitations

There are several limitations of the Likert-type scale as well. One important limitation is that, with this scale, we can simply examine whether respondents are more or less favourable to a topic, but we cannot tell how much more or less they are. There is no basis for belief that the five positions indicated on the scale are equally spaced. The interval between 'strongly agree' and 'agree', may not be equal to the interval between "agree" and "undecided". This means that Likert scale does not rise to a stature more than that of an ordinal scale, whereas the designers of Thurstone scale claim the Thurstone scale to be an interval scale. One further disadvantage is that often the total score of an individual respondent has little clear meaning since a given total score can be secured by a variety of answer patterns. It is unlikely that the respondent can validly react to a short statement on a printed form in the absence of real-life qualifying situations. Moreover, there "remains a possibility that people may answer according to what they think they should feel rather than how they do feel."4 This particular weakness of the Likert-type scale is met by using a cumulative scale which we shall take up later in this chapter.

In spite of all the limitations, the Likert-type summated scales are regarded as the most useful in a situation wherein it is possible to compare the respondent's score with a distribution of scores from some well defined group. They are equally useful when we are concerned with a programme of change or improvement in which case we can use the scales to measure attitudes before and after the programme of change or improvement in order to assess whether our efforts have had the desired effects. We can as well correlate scores on the scale to other measures without any concern for the absolute value of what is favourable and what is unfavourable. All this accounts for the popularity of Likert-type scales in social studies relating to measuring of attitudes.

4. Cumulative scales:

Cumulative scales or Louis Guttman's scalogram analysis, like other scales, consist of series of statements to which a respondent expresses his agreement or disagreement. The special feature of this type of scale is that statements in it form a cumulative series. This, in other words, means that the statements are related to one another in such a way that an individual, who replies favorably to say item No. 3, also replies favorably to items No. 2 and 1, and one who replies Favorably to item No. 4 also replies favorably to items No. 3, 2 and 1, and so on. This being so an individual whose attitude is at a certain point in a cumulative scale will answer favorably all the items on one side of this point, and answer unfavorably all the items on the other side of this point.

The individual's score is worked out by counting the number of points concerning the number of statements he answers favorably. If one knows this total score, one can estimate as to how a respondent has answered individual statements constituting cumulative scales. The major scale of this type of cumulative scales is the Guttman's scalogram

The technique developed by Louis Guttman is known as scalogram analysis, or at times simply 'scale analyses. Scalogram analysis refers to the procedure for determining whether a set of items forms a unidimensional scale. A scale is said to be unidimensional if the responses fall into a pattern in which endorsement of the item reflecting the extreme position results also in endorsing all items which are less extreme. Under this technique, the respondents are asked to indicate in respect of each item whether they agree or disagree with it

5. Factor Scales

Factor scales are developed through factor analysis or on the basis of intercorrelations of items which indicate that a common factor accounts for the relationships between items. Factor scales are particularly "useful in uncovering latent attitude dimensions and approach scaling through the concept of multiple-dimension attribute space." More specifically the two problems viz., how to deal appropriately with the universe of content which is multi-dimensional and how to uncover underlying (latent) dimensions which have not been identified, are dealt with through factor scales. An important factor scale based on factor analysis is *Semantic Differential (S.D.)* and the other one is *Multidimensional Scaling*. We give below a brief account of these factor scales.

a) Semantic differential scale: Semantic differential scale or the S.D. scale developed by Charles E. Osgood, G.J. Suci and P.H. Tannenbaum (1957), is an attempt to measure the psychological meanings of an object to an individual. This scale is based on the presumption that an object can have different dimensions of connotative meanings which can be located in multidimensional property space, or what can be called the semantic space in the context of S.D. scale. This scaling consists of a set of bipolar rating scales, usually of 7 points, by which one or more respondents rate one or more concepts on each scale item.

Democratic party

Bad __:__:__:__:__:__x_ Good Cruel __:__:__:__:_x_:__ Kind Unpleasant __:__:__:_x_:__ Pleasant Unfair __:__:__:__:_x_ Fair Dirty __:__:__:__:_x_:_ Clean Negative __:__:__:_x_:__ Positive Foolish __:__:__:__:__x_ Wise

b) Multidimensional scaling: Multidimensional scaling (MDS) is relatively more complicated scaling device, but with this sort of scaling one can scale objects, individuals or both with a minimum of information. Multidimensional

VISHAKHA MANKAR

Shantiniketan Business School, Nagpur

scaling (or MDS) can be characterized as a set of procedures for portraying perceptual or affective dimensions of substantive interest. It "provides useful methodology for portraying subjective judgements of diverse kinds."7 MDS is used when all the variables (whether metric or non-metric) in a study are to be analyzed simultaneously and all such variables happen to be independent. The underlying assumption in MDS is that people (respondents) "perceive a set of objects as being more or less similar to one another on a number of dimensions (usually uncorrelated with one another) instead of only one."8 Through MDS techniques one can represent geometrically the locations and interrelationships among a set of points. In fact, these techniques attempt to locate the points, given the information about a set of interpoint distances, in space of one or more dimensions such as to best summarize the information contained in the interpoint distances.